Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SIMS using O-, F-, CI-, Br- and I- primary ion bombardment

Identifieur interne : 001594 ( Main/Repository ); précédent : 001593; suivant : 001595

SIMS using O-, F-, CI-, Br- and I- primary ion bombardment

Auteurs : RBID : Pascal:12-0383517

Descripteurs français

English descriptors

Abstract

The success of secondary ion mass spectrometry (SIMS) analyses depends largely on the ionization probability of the analyzed elements. The chemical state of the surface changes with the chemical nature and the concentration of implanted ions. The positive ionization probability can be enhanced by bombarding the surface with electronegative elements. In view of such an enhancement of the positive secondary ion yield, we present SIMS analyses carried out with O-, F-, Cl-, Br- and I- primary ion beams. Useful yields were experimentally determined for metal (Al, Ni, Cu, Ag and Ta) and semiconductor samples (Si, Ge, InP and GaAs). For metal samples, an enhancement of the useful yield under halogen bombardment, compared with O- bombardment, was observed for Ni, Cu and Ag under F- bombardment (enhancement of up to two orders of magnitude). For semiconductors, lower useful yields are obtained under halogen bombardment as compared with O- bombardment. The observed results are discussed in terms of the surface concentration of the implanted primary ion species and their electronegativity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0383517

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">SIMS using O
<sup>-</sup>
, F
<sup>-</sup>
, CI
<sup>-</sup>
, Br
<sup>-</sup>
and I
<sup>-</sup>
primary ion bombardment</title>
<author>
<name sortKey="Pillatsch, L" uniqKey="Pillatsch L">L. Pillatsch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Science and Analysis of Materials, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wirtz, T" uniqKey="Wirtz T">T. Wirtz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Science and Analysis of Materials, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0383517</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0383517 INIST</idno>
<idno type="RBID">Pascal:12-0383517</idno>
<idno type="wicri:Area/Main/Corpus">001795</idno>
<idno type="wicri:Area/Main/Repository">001594</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0142-2421</idno>
<title level="j" type="abbreviated">Surf. interface anal.</title>
<title level="j" type="main">Surface and interface analysis</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Electronegativity</term>
<term>Gallium arsenides</term>
<term>Germanium</term>
<term>Indium phosphide</term>
<term>Inorganic compounds</term>
<term>Ion beams</term>
<term>Ion implantation</term>
<term>Ionization</term>
<term>Nickel</term>
<term>Positive ions</term>
<term>SIMS</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>SIMS</term>
<term>Ionisation</term>
<term>Implantation ion</term>
<term>Ion positif</term>
<term>Faisceau ion</term>
<term>Nickel</term>
<term>Semiconducteur</term>
<term>Silicium</term>
<term>Germanium</term>
<term>Phosphure d'indium</term>
<term>Composé minéral</term>
<term>Composé binaire</term>
<term>Arséniure de gallium</term>
<term>Electronégativité</term>
<term>InP</term>
<term>Si</term>
<term>Ge</term>
<term>GaAs</term>
<term>6849S</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Nickel</term>
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The success of secondary ion mass spectrometry (SIMS) analyses depends largely on the ionization probability of the analyzed elements. The chemical state of the surface changes with the chemical nature and the concentration of implanted ions. The positive ionization probability can be enhanced by bombarding the surface with electronegative elements. In view of such an enhancement of the positive secondary ion yield, we present SIMS analyses carried out with O
<sup>-</sup>
, F
<sup>-</sup>
, Cl
<sup>-</sup>
, Br
<sup>-</sup>
and I
<sup>-</sup>
primary ion beams. Useful yields were experimentally determined for metal (Al, Ni, Cu, Ag and Ta) and semiconductor samples (Si, Ge, InP and GaAs). For metal samples, an enhancement of the useful yield under halogen bombardment, compared with O
<sup>-</sup>
bombardment, was observed for Ni, Cu and Ag under F
<sup>-</sup>
bombardment (enhancement of up to two orders of magnitude). For semiconductors, lower useful yields are obtained under halogen bombardment as compared with O
<sup>-</sup>
bombardment. The observed results are discussed in terms of the surface concentration of the implanted primary ion species and their electronegativity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0142-2421</s0>
</fA01>
<fA02 i1="01">
<s0>SIANDQ</s0>
</fA02>
<fA03 i2="1">
<s0>Surf. interface anal.</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>SIMS using O
<sup>-</sup>
, F
<sup>-</sup>
, CI
<sup>-</sup>
, Br
<sup>-</sup>
and I
<sup>-</sup>
primary ion bombardment</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PILLATSCH (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WIRTZ (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Science and Analysis of Materials, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1370-1372</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18260</s2>
<s5>354000504494470110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0383517</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Surface and interface analysis</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The success of secondary ion mass spectrometry (SIMS) analyses depends largely on the ionization probability of the analyzed elements. The chemical state of the surface changes with the chemical nature and the concentration of implanted ions. The positive ionization probability can be enhanced by bombarding the surface with electronegative elements. In view of such an enhancement of the positive secondary ion yield, we present SIMS analyses carried out with O
<sup>-</sup>
, F
<sup>-</sup>
, Cl
<sup>-</sup>
, Br
<sup>-</sup>
and I
<sup>-</sup>
primary ion beams. Useful yields were experimentally determined for metal (Al, Ni, Cu, Ag and Ta) and semiconductor samples (Si, Ge, InP and GaAs). For metal samples, an enhancement of the useful yield under halogen bombardment, compared with O
<sup>-</sup>
bombardment, was observed for Ni, Cu and Ag under F
<sup>-</sup>
bombardment (enhancement of up to two orders of magnitude). For semiconductors, lower useful yields are obtained under halogen bombardment as compared with O
<sup>-</sup>
bombardment. The observed results are discussed in terms of the surface concentration of the implanted primary ion species and their electronegativity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70I20R</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>SIMS</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>SIMS</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Ionisation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Ionization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Implantation ion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Ion implantation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Ion positif</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Positive ions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Faisceau ion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ion beams</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Electronégativité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electronegativity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Ge</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6849S</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fN21>
<s1>296</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001594 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001594 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0383517
   |texte=   SIMS using O-, F-, CI-, Br- and I- primary ion bombardment
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024